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Erdogan & Chatwin (1967) derived a nonlinear diffusion equation 

4 C  = a,([D, + (a,c)2 0 2 3  

which models the effect of buoyancy upon the longitudinal dispersion of a solute in 
pipe flow. The same equation arises more widely as a limiting form in which only the 
first buoyancy correction is retained. In this paper long-term asymptotic solutions are 
obtained both for the smearing-out of a concentration jump and for the approach to 
normality of a finite discharge. A variant of the method provides an approximate 
solution to the initial-value problem, and a comparison is made with Prych’s (1970) 
experimental results. 

1. Introduction 
G. I. Taylor’s two papers (1953, 1954) provide the basis for most subsequent funda- 

mental studies of contaminant dispersion in flows. Prior to that work the use of 
diffusion equations was merely empirical and it was not understood why the effective 
longitudinal diffusivity could be several orders of magnitude greater than the laminar 
or turbulent diffusivity K ~ .  Formally, the one-dimensional longitudinal dispersion 
coefficient can be related to the variation across the flow of the concentration c and the 
longitudinal velocity w: 

D = Z3 - (W - W) (C - E ) / a , C .  (1) 

In  this equation z is the longitudinal distance and overbars are used to denote the 
cross-sectional average values. Taylor ( 1953, 1954) recognized that, after transient 
severe lateral concentration variations had been smoothed out, the remaining varia- 
tion c - F would be determined by a balance between the competing effects of trans- 
verse mixing and transverse shear. If the flow is unaffected by the contaminant this 
balance leads to c - C being directly proportional to 8,C and inversely proportional to 
the transverse mixing. Thus the dispersion coeecient is independent of a,C, and the 
contaminant dispersion is governed by a linear diffusion equation. Also, for parallel 
flows, the two contributions to D have respectively direct and inverse dependence 
upon the laminar or turbulent diffusivities, and for weak diffusive mixing D is domi- 
nated by the shear dispersion contribution. 

For buoyant contaminants the situation is more complicated (Chatwin 1976; 
Erdogan & Chatwin 1967). The formal definition (1) of the dispersion coefficient 
remains the same, as does the Taylor mechanism of a dynamic balance between trans- 
verse mixing and transverse shear. However, the shear and the mixing are themselves 
modified by the presence of the buoyant contaminant. First, the longitudinal 
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concentration gradient a , F  causes a longitudinal pressure gradient, and so a change 
in w - W. Second, the cross-sectional concentration variation c - E leads t o  a seccndary 
flow which augments the diffusive mixing and alters the coefficient of proportionality 
between c-C and 3,C. The net result of these complexities is that the dispersion 
coefficient is a function of the concentration gradient. 

It is only in exceptional circumstances that exact analytic solutions can be found 
to  a nonlinear diffusion equation with gradient-dependent diffusivity . (For a buoyancy- 
driven flow with D proportional to  (azc)2,  Imberger (1976) found that there exist 
similarity solutions. However, this diffusivity is unusual in that it does not reduce to 
the linear case for small concentration gradients.) Hence understanding of the effect 
of buoyancy upon contaminant distributions has been limited to qualitative considera- 
tions or to numerical solutions for particular cases. Barton ( 1 9 7 6 ~ )  attempted to 
improve this situation by studying the limiting case of the approach to  normality for 
solutions to the Erdogan-Chatwin equation. The essential simplification which 
permits analytical progress is that  for large times the nonlinearity is weak. Unfortu- 
nately Barton’s work is in error and underestimates the effect of buoyancy. In  the 
present paper we extend and correct Barton’s work. 

I n  axes moving with the bulk velocity w, the model equation derived by Erdogan & 
Chatwin (1967) takes the form 

a,c = a,([q, + ( a , c ) ~ ~ , l  a,q, (2) 

where Do and D, are constants. The original derivation was as a truncated series 
expansion in powers of the concentration gradient for a buoyant contaminant in pipe 
flow. More generally, for that  class of flows in which the dispersion coefficient depends 
upon the magnitude but not the direction of the concentration gradient, (2) is the 
limiting form when the nonlinearity is weak (e.g. longitudinal dispersion in a straight 
channel of small depth-to-width ratio; see Smith 1976). The same equation arises 
without truncation, but with the approximation implicit in the Taylor mechanism, 
for the transverse dispersion of a buoyant contaminant in open-channel flow (Prych 
1970). 

The problems addressed in this paper concern the weak buoyancy limit. First of all 
the general solution procedure is set forth. It is then used to  derive approximate 
solutions for the initial-value problem. I n  particular, a new calculated value for D, 
(Smith 1979) is shown t o  yield much improved agreement with Prych’s (1970) experi- 
mental results. Next formal asymptotic solutions are determined for the approach to  
normality of a finite discharge and for the eventual smearing-out of a concentration 
jump. I n  both these problems it is found that the effect of buoyancy is larger than 
might be suggested by an order-of-magnitude estimate of the corresponding nonlinear 
term in the Erdogan-Chatwin equation (2). Heuristically, this unexpectedly large 
response can be attributed to  a resonance between the nonlinear term and a natural 
decaying mode of the linear equations. 

2. Hermite series representation 
For a cloud of passive solute, Chatwin (1970) showed that the long-term asymptotic 

behaviour of the concentration distribution can be described either by a series expan- 
sion in powers of t-4 or by a Hermite series. Barton (1976u, 6 )  used the former method 
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to study the approach to  normality of solutions both to the model equation (2)  and to  
the full hydrodynamic equations for a buoyant Contaminant in pipe flow. Here we use 
the latter method and restrict our attention to the Erdogan-Chatwin equation (2). 

Motivated by the form of the eventual Gaussian solution, we pose the Hermite 
series representation 

an(t) He, ( z /a)  exp { - ~ ( z / c ~ ) ~ } .  - M m  c = -  
a(27+ ,fb n! (3) 

Here the source strength M is defined to  be the integral of F with respect to z ,  so the 
leading coefficient a, equals 1. The defining property of the Hermite polynomials is that 

He, (y) exp ( - ayz) = ( - d/dy)" exp ( - ky2)), 
i.e. the polynomials are orthogonal with respect to the Gaussian weight function over 
the infinite interval ( - 00, 00). If a(t) is chosen to  be the exact standard deviation, then 
a2 = 0 and the expression (3) is the statistical representation of the contaminant 
distribution in terms of its cumulants, u3(t) being the skewness and a,(t) the kurtosis 
(spikiness). 

Our object is to  replace all the terms in (2) by Hermite series with the same argument 
z / r .  It is easy to see that differentiation of the representation (3)  with respect to z or t 
yields similar series. For example, 

a 
at - {a,(t) He, (./a) exp - W4">) 

dt 
- -- 
- (2iz di2 + nHe,) + exp { - g(z/a)Z}.  

However, the cubic nonlinearity (a ,13)~ presents more difficulty. We need to be able to 
re-express the sum (including permutations) over i ,  j and k of the terms 

.. - ajkai-lai-lak-l exp { - Hz/fl)Z}, 

i.e. a triple product of polynomials in z / a  multiplied by an exponential of three times 
the desired argument. 

Our starting point is Mehler's formula 

exp( - 8 ~ 2 )  = ~ ( - 'Irn Hezm (y) exp ( - JyZ) 
m = O  m!  3m+t (4) 

(ErdBlyi et ul. 1953, 5 10.13, equation 22). By successively multiplying both sides ofthis 
equation by (HeJi!), (Hej/j!) and (He,/k!) and at each stage employing the product 
formula I n  

He, (y) He, (y) = $ r !  (T) Hel+n-zr (y) with m = min (I,%) 
r=O 

(ErdBlyi et al. 1953, 9 10.13, equation 40), we can represent the triple products. 

the representation 
Thus we have a constructive procedure for determining the constants G( i , j ,  k, n)  in 
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I n  particular we record that 

G(2m+ 1 , 1 , 1 , 1 )  = ( -  1)m+i(m-3)/m!3m+it, 

G(2m, 4 , 1 , 1 )  = ( - l)m+l (m3- 37m + 12)/m! 233m+P. 

Many of the qualitative properties of G can be seen most readily from the generating 
function: 

3-t exp ( - 9"E: + + 5: + 5: - 515, - 6253 - 5 3 5 4  - 5451 - 5153 - 52541) 

= c E:5i5?5; G(i,j ,  k, n). 
i , i , k , n  

For example, G is invariant under permutations of its arguments and is zero when the 
s u m i + j + k + n i s o d d .  

By this means all the terms in the Erdogan-Chatwin equation are replaced by series 
of the desired form. Equating coefficients, we obtain the sequence of coupled ordinary 
differential equations 

fY2 d I d  
n dt 2 dt a, + [a, + (n- 1) an-,] -- c? -- 

with n = 1,2, ... . It deserves emphasis that  these equations are exact and, for the 
appropriate class of initial conditions, are equivalent t o  the Erdogan-Chatwin 
equation. 

3, Approximate solutions 
For practical purposes it often suffices t o  know only the simplest global properties of 

the contaminant distribution, e.g. the standard deviation. Thus solving the full non- 
linear partial differential equation ( 2 )  is not warranted. Indeed, the initial conditions 
might themselves be known only approximately. The major attribute of the alternative 
equations (6) is that  they readily admit approximate and asymptotic methods of 
solution. Furthermore, they directly involve the most meaningful statistical quantities, 
i.e. the standard deviation and the cumulants. 

If CT is chosen to  be the exact standard deviation (i.e. a, = 0) then the n = 2 equation 
is of special importance in that it gives the growbh rate of the variance cr2: 

The most drastic simplification is to  truncate the cubic nonlinearity after the leading 
term (i.e. t o  neglect a j  f o r j  + 0): 

D,&P 1 
cr2 = Do+- -  I d  

2 dt 2 n d  38. 
-- 

The implicit solution for &(t )  is given by 

CT - A tan-l ( c 2 / A )  = 2D0t + CT? - A tan-l (cr?/A) 

with A = M(D2/D0)4 3 - 2 ( 2 ~ ) - *  = 0.1750M(D2/D0)4, 

( 7 )  
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where vI is the initial standard deviation. If for times prior t o  the validity of the model 
equation ( 2 )  a solution to  the complete equations for the flow were available (e.g. 
Chatwin 1970, appendix C), then it would be appropriate to  take 0; as being the 
effective, rather than the actual, initial standard deviation. 

Prych (1970) gave an order-of-magnitude analysis of ( 2 )  which led him to propose 
an equation ofthe same form as ( 7 )  but with the 30 yo larger nonlinear term D, M2/25a4.  
Using his theoretical estimate for D, he found that the theory underestimated the 
excess dispersion due to  buoyancy by about a factor of three. Here the suggested 
reduction in the nonlinear coefficient would make the disagreement slightly more 
severe. However, Smith (1979) points out that  Prych’s quasi-laminar model for the 
detailed dynamics of the flow is not appropriate. The revised theoretical estimate for 
D, is larger by a factor of 3 and yields a much improved fit with Prych’s experiments 
(see figure 1 below). 

There are many alternative ways of trying to improve upon the approximation ( 7 ) ,  
none of which seem to lead to  exact analytic solutions. One of the simpler approaches 
is to  regard the nonlinearity parameter N = D2M2/2mD,v4 as small. To the first 
approximation the an-, terms on the two sides of (6) cancel each other out. Thus we 
find that the cumulants an(t)  are related t o  their (effective) initial values by the linear 
solution a;(v,/a)n.  Using this simple result, and making the further assumption that 
the cumulants are moderately small, we can estimate the nonlinear term in the 
equation for the variance 

1 dv2 m ( 2 m  + 1)  (m - 3 )  
m! 3m 

The neglected terms are of second order either in the nonlinearity parameter or in the 
cumulants. If it should happen that the precise profile is known rather than just the 
first few cumulants, then the series can be summed to give 

C = -‘sm 2M - -m E(0,z)[6+exp(-i(:)2) { ( l+$) tHe, (~)+9( l+$) tHe2(~)) ]d i  

with s2 = $v2 - a:. The conversion to  an integral follows from the definition 

and the resulting integrand is summed by means of the formulae 

Mehler’s formula as quoted in the previous section corresponds to p2 = 2. 
I n  Prych’s experiment the buoyant contaminant was introduced uniformly over 

a finite width b = 2 x 3BvI. Performing the integration and writing r for the ratio 
u$/v2, we find that (8) becomes 

1 d v 2  
( 9 )  



328 R.  Smith 

60 100 300 600 1000 3000 6000 1000 

FICIJRE 1. Comparison between Smith’s (1979) theory and Prych’s (1970) experimental results 
for the excess variance due to buoyancy as a function of the strength and width of the source. 

Dimensionless source strength 

Initially the dispersion is less than that predicted by ( 7 ) .  However, once the con- 
taminant distribution has doubled its width the subsequent evolution is as given by 
(7). An intuitive explanation of this behaviour is that the extensive region of weak 
concentration gradients delays the full effect of the nonlinear dispersion. Since the 
nonlinearity is weak, the identification of the effective initial conditions with the 
actual initial conditions requires that the Taylor balance is achieved before there is 
significant distortion of the contaminant distribution (Chatwin 1970). In  this context 
a sufficient condition is that  the discharge width exceeds the water depth (Smith 
1979). 

Equation (9) is a first-order ordinary differential equation and numerical solutions 
have been obtained using a Runge-Kutta procedure. Figure 1 compares these results 
with Prych’s experimental results as presented in his figures 5.2 and 6.2. If we take C 
to be the fractional density perturbation, then the definition of the dimensionless 
source strength is Mgh2/D& where h is the channel depth. The dimensionless excess 
variance is the difference, a t  large distances downstream, between the values of d / h 2  
for buoyant and neutrally buoyant contaminants, i.e. 

lim ( ( ~ 2 -  v: - 2D,t)/h2. 
t+m 

The four groups of experimental results and the corresponding theoretical curves are 
labelled by the breadth-to-depth ratio of the source. 
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The main reason for the improvement upon Prych’s theory is the use of the revised 
estimate for D ,  (Smith 1979): D ,  = h5g2/96u; k3. 

Here u* is the friction velocity, k the von Karmin constant for the flow and it has 
again been assumed that C is measured in density units. Prych’s experiments involved 
five different flow conditions, and hence five values of the two important turbulence 
constants k and cz = D,/hu,. In dimensionless form the nonlinearity parameter in ( 9 )  
is proportional to ( a / k j 3 .  Thus i t  is the average of this quantity that is used in the 
numerical calculations. 

The agreement between theory and experiment deteriorates as the source becomes 
narrower and as the discharge becomes more buoyant, It happens that these are the 
conditions under which the approximate equation (8) becomes unreliable (i.e. the 
nonlinearity parameter is initially large). However, there are also more substantial 
reasons than just the results of figure 1 for restricting the situations in which ( 2 )  is 
used. Smith (1979) derives a hierarchy of model equations which can be expected to 
apply in those regimes where the Erdogan-Chatwin equation ceases to  be appropriate. 

4. Approach to normality 
After a sufficiently long time the contaminant distribution evolves according to the 

linear diffusion equation. Thus one way of regarding the earlier buoyancy-modified 
evolution is as providing starting conditions for the final linear stage. This is exemplified 
by Prych’s (1970) choice of the excess variance as a practical measure of the buoyancy 
effects. Since the cloud of contaminants is continually widening, we can infer that the 
largest-scale effects due to  buoyancy occur immediately prior to  the linear stage. This 
is precisely the circumstance in which the Erdogan-Chatwin equation becomes 
applicable. Hence an analysis of the asymptotic solutions of ( 2 ) ,  or equivalently of (6 ) ,  
is pertinent even to problems where the initial concentration gradients are much too 
large for the uniform applicability of the model equation. 

As a preliminary to solving ( 6 )  i t  is convenient to use the equation for u2 (i.e. n = 2) 
in order to replace t by u2 as the independent variable. Thus, for n = 1 , 3 , 4 ,  . . ., we have 

where we have again used the abbreviated notation 

N = D, M2/27~D, d‘. 

To solve (10)  we make the assumption that u2 is large (i.e. consider the eventual 
approach to normality). Thus equations (10) become linear equations with small 
forcing terms. The homogeneous equations have solutions (integrating factors) which 
decay as u-n. An order-of-magnitude estimate of the solutions might suggest that a, 
decays a t  the same rate as the larger of u-n and the nonlinear forcing. The detailed 
results obtained below reveal that the dominant effect of buoyancy occurs in a term 
which does not conform to this general rule. 
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For the first few cumulants the nonlinear terms are only a small perturbation about 
the linear solution, and we obtain 

Without loss of generality the constant a, which one would expect as a multiplier of the 
free linear solution in the expression for a, has been set equal to  zero. To do this it 
suffices to shift the z axis such that a t  large u2 the centroid of the concentration profile 
is situated a t  the origin. The similar multiplier a3 in the expression for the skewness is 
an  undetermined constant which depends both upon the initial skewness of the 
contaminant distribution and upon the effect a t  small values of u2 of any nonlinear 
corrections to the Erdogan-Chatwin equation. 

I n  the equation for the kurtosis (i.e. n = 4) the dominant nonlinear term has 
precisely the same u dependence as the natural decaying mode: 

This resonance leads to  a relatively large response 

The role of uo is simply t o  make dimensionless the argument of the logarithm. For 
definiteness we define 

0;: = ID21 M2/27rD0, i.e. u/uo = IN/-).  

The form of the error estimate is in fact consequent upon the occurrence of higher- 
order terms involving a, in the equation for a,. The effect a t  large values of u2 of 

D, and further corrections to  the nonlinear dispersion can be regarded as being 
subsumed in this same error estimate. 

For the subsequent even cumulants the nonlinearity dominates the free linear 
decaying solution and we obtain 

( -  1 ) m ~ ( m - 4 )  (2m- i)! 
a2m = N + aZma-2m + O ( r 8 1 n 2  (u/u,,)). 

(m - 2 )  (m - l ) !  3m+4 

As above, the aZm terms show the extent to  which the cumulants are dependent upon 
the detailed behaviour a t  small values of u2. The size of the error estimate is related to 
a subsidiary resonance of a higher-order term in the a, equation. 

Since a , = 0, the nonlinearity is relatively weak for the odd cumulants. (We recall 
that  G is non-zero when the sum of its arguments is even, and in particular that  
G ( l ,  1,1,2rn) = 0.) A t  n = 5 the response is essentially linear: 
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At n = 7 there is a further resonance: 

r7 In (u/u,) + a 7 r 7  + O(r9). 

For the subsequent odd cumulants the leading term reverts to  the r7 dependence 
which is suggested by an order-of-magnitude estimate of the nonlinear terms in (10): 

D2M2 ( - l ) m + l  (m3 - 37m + 12) (2m + I)! 
aZrn+l= 013 u-7 + o(a-9 1n (+J). ( ) 24(m-3)m!3m+% 

Bringing together all the above asymptotic solutions, we find that the concentration 
is given by 

( 1 1 )  

where the Hermite functions have the common argument z / a .  I n  particular, we note 
that if there is symmetry with respect to  z then for large u2 the departure from 
normality is dominated by the N l n  IN1 term. Furthermore, a t  the next order down 
(i.e. N or r4) the only influence of the initial conditions is via the kurtosis factor u4. 

Figure 2 shows the scaled profiles of i5 for positive values of D, with ui = 0. We 
observe that, as the cloud of contaminant widens, the nonlinearity acts in such a 
way as to reduce the overall steepness. This is in addition to the augmented rate of 
spreading. The opposite is the case when D,  is negative and the buoyancy tends to 
reduce the dispersion. 

If we envisage the asymptotic solutions being used beyond a given variance a;, 
then the constants ai can be related to  the cumulants a t  this inner reference position. 
To the order of accuracy of the above asymptotic approximations the resulting 
equation for the standard deviation is 

a i m  (2) m ]  
( -  l)m+1(2m+ 1)  (m- 3) 

m !  3m 

-- N2 c .  ( ~ ~ - 3 ) ( m - 4 ) ( 2 ~ ~ + 1 ) !  [ l -  (y-,]. 
(12) 

This can be regarded as being an extension of the approximate equation (8), provided 
that the nonlinearity parameter and the initial cumulants are small enough for the 
asymptotic formulae to be uniformly applicable. We note that the skewness tends to 
increase the dispersion, but that  the other new terms marginally reduce the variance 
from the predictions of (8). The oscillatory character of the constants G(i , j ,  k, n )  makes 

54 m = 5  (m - 2) (m! ) ,  32m 
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FIGURE 2. Approach t o  normality of the concentration distribution E for symmetric solutions of 
the Erdogan-Chatwin equation as the nonlinearity parameter N tends to zero (i.e. the standard 
deviation u tends to infinity). 

it possible to infer that the dominant neglected terms are positive, so (12) slightly 
underestimates a2. 

The solution of (12) permits us to revert to the use oft as the independent variable. 
In particular, we note that after a sufficiently long time cr2 evoIves according to the 
linear diffusion equation 

cr2 = 2D0(t - to)  + O(t-1). 

Here to is a virtual time origin, and is an alternative way of representing the excess 
variance due to buoyancy. This simple formula enables us to confirm that the occur- 
rence of logarithmic terms in the concentration distribution ( 1 1 )  is not merely an 
artifact of the choice of independent variable. 
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5. Switchback 

means of a series expansion of the form 
Barton (1976a, b )  studied the long-term effect of buoyancy upon dispersion by 

C(X, T )  N T-lC(’’(X) + . . . + T-”C(”(X) + . . . 
with X = 2/(2BOt)4, T = ( Z B o t ) ~ / ~ o .  

Here the asymptotic co-ordinates ( X ,  T) can be thought of as being first approxima- 
tions to ( z / a )  and to the inverse nonlinearity measure INI-4. Barton’s results differ 
from ( 1 1 )  in the absence of the logarithmic terms. This is a serious disagreement 
because, according to the present analysis, the leading-order effect of buoyancy occurs 
in the Nln IN1 term. The purpose of this section is to show how Barton’s method can 
be modified to yield correct results, and to explain why certain qualitative conclusions 
of Barton’s papers remain valid. 

As has several times been noted above, the logarithmic terms arise as the result 
of a resonance of a natural decaying mode of the linear equations. Barton overlooked 
this resonance by assuming that there existed a bounded solution h ( X )  to the dif- 
ferential equation 

h,, + X h ,  + 5h = - Q2(aR/Pu)2 a x [ X 3  exp ( - QX2)]  (13) 

[Barton 1976a, equation (3.10)], where the expression on the right-hand side arises 
from the leading-order buoyancy terms. The homogeneous equation has the Hermite- 
function solution He,(X) exp ( - & X 2 ) .  Thus we can use Sturm-Liouville theory to 
assert that a necessary condition for h ( X )  to be bounded is that the integral 

d 
He, (X) dX - [X3exp ( - $ X z ) ]  dX 

be zero. The actual value of the integral is 2 x 3-4 (i.e. the nonlinear terms resonate 
with the Hermite function). Hence Barton’s calculations are in error and there does 
not exist a bounded solution for h ( X ) .  (Integrating both sides of (13) four times with 
respect to X gives an equation which can be solved explicitly. The resulting explicit 
solution for h ( X )  grows as X 3  for large X.) 

The function i ( z /a ) ,  which describes the next-to-highest-order effects of buoyancy 
in the representation (1  1 )  (i.e. the sum of the N terms), satisfies the equation 

K X X  + + 5 i  = a X [ X 3  exp ( - $X2)] - 2 x 3-3 He, (X) exp ( - 4x2). 
Apart from a constant factor, this equation differs from (13) in that the resonant 
part of the forcing has cancelled out. This cancelling can be attributed to the occurrence 
of the logarithmic term involving H~,(z/B) earlier in the asymptotic series. In  the 
literature on asymptotic expansions this method of including additional earlier terms 
to remedy later singularities is called ‘switchback’ (Chang 1961). 

Thus the modification to Barton’s method consists of checking rigorously at  the 
T-i stage ofthe calculation whether a bounded solution C(j ) (X)  does exist. If not, then 
an additional earlier term T-i In TC(i* l ) (X)  is needed. The extra terms are multiples 
of linear eigenmodes, the amplitudes of which are chosen to cancel out the resonance 
in the C(f) equation. At a higher stage of the calculation powers of logarithms can 
arise in the same way (e.g. the error estimate in the expression for aZm). 
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The counterpart to (1 1 )  is 

I 6 

i = O  
+ 2 /?jT-1-iHej(X)+U(T-81nT) , 

where the nonlinear buoyancy terms have the upper sign when D,  is positive. The 
undetermined constants pj depend upon the initial contaminant distribution and 
upon the effect a t  small values of T of any corrections to the Erdogan-Chatwin 
equation. One consequence of the nonlinearity is that equation (6.13) of Chatwin 
(1970) does not hold, and there is no acceleration of convergence if the Hermite series 
is rearranged into Edgeworth’s form. 

Although Barton (1976a) did not solve (13), he made use of it in a calculation to 
determine the systematic long-term contribution of the buoyancy terms to the 
second moment of the contaminant distribution. On the basis of this calculation he 
reached the important conclusion that the dispersion induced by buoyancy effects at  
short and intermediate times is of greater order than the dispersion which is induced 
at asymptotically large times. It happens that the second moment of the resonant 
eigenmode He,(X) exp (4x2) is zero. Thus Barton’s result for the second moment of 
h ( X )  is correct when applied to k(X), and furthermore there is no contribution from 
the logarithmic term. Hence the qualitative conclusion and the quantitative expression 
for the second moment are both valid. 

The second moment of C ( z ,  t )  is simply the variance. For sufficiently large times we 
can derive from (12) the asymptotic representation 

D M2 
u2 = 2 0 ,  t + constant - 2 t-1 + o(t-3 In t ) .  

4nDE 3% 

Except for the error estimate, this confirms Barton’s ( 1 9 7 6 ~ )  result. However, if we 
use the actual solution of (12) and not merely the asymptote, then we can calculate the 
contribution to the excess variance (i.e. to the constant term) due to buoyancy 
effects at intermediate times. Indeed, we can interpret the results presented in figure 
1 as being an indication of the relative importance of buoyancy effects at  short and at  
intermediate times. Thus, for strongly buoyant narrow discharges, it is not justifiable 
to neglect the short-term effects of buoyancy. 

The original derivation of ( 2 )  by Erdogan & Chatwin was based upon several 
physically reasonable (but unjustified) assertions. Barton ( 1976 b )  concluded that the 
Erdogan-Chatwin equation correctly described the dominant effect of buoyancy for 
large Schmidt numbers. He inferred this from the fact that, in the limit of large 
Schmidt number, the inhomogeneous (i.e. buoyancy) terms in the equation for 05) 
were the same for the model equation as they were for the full equations. The two 
alternative solutions both need to be corrected by the use of ‘switchback’. For- 
tunately, the resonant components of the inhomogeneous terms are necessarily the 
same in both cases. Thus, when we include the earlier buoyancy term T-51n TC(51 l),  

we find that for large Schmidt numbers both C(5-1) and 0 5 )  are correctly predicted by 
the Erdogan-Chatwin equation. 
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6. Smearing-out of a concentration jump 
For a discontinuity in concentration the eventual linear solution involves the error 

function, i.e. the integral of a Gaussian profile. Thus we are led to replace the re- 
presentation ( 3 )  by 

Here co and C are the semi-sum and the semi-difference of the concentrations at  plus 
and minus infinity. If c(t) is chosen to be the exact standard deviation for the con- 
centration gradient a,c, then b, = 0 and b,(t) are precisely the cumulants of a , E .  
Indeed, we are in effect solving the nonlinear diffusion equation 

atf = axoo +f"Zlf) 
for a,c. 

As in Q 2, we use Mehler's formula and the constants G(i , j ,  k, n) to represent the 
cubic nonlinearity : 

(a, E ) 3  = (-)3 2c 5 ( Gbi b, bk) He, (:) exp [ - f (:)'I, 
d2n)' a=O i , j , k  

where b, = 1 .  We observe that the indices of the cumulants are a step removed from 
those in the analogous representation (5). This means that the most-used constants 
in the following calculations are 

G(2m, 0, 0 , O )  = ( - l ) m / m  ! 3m+4, 

The resulting sequence of equations, with which we replace the Erdogan-Chatwin 

G(2m + 1 , 3 , 0 , 0 )  = ( - l ) " ( m  + 6 ) / m !  2 x 3m+4. 

equation, is 

a2 d l d  
-- b, + [b,+ (n -  1 )  bn-,] - - c2 
n dt 2 dt 

= ( n -  1)Dob,-2+- 2 0 ,  C2 ( n - I ) !  C G ( i , j , k , n - 2 ) b , b j b k  (16 )  
ma2 i , j ,  k 

with n = 2 , 3 . .  . . There is in addition a minor equation corresponding to  n = 1 : 

d 1 da2 
dt ' 2  dt 

( ~ 2 -  b, + b - - = 0, i.e. b, = constant/u. 

A suitable shift of the z axis enables us to set b, equal to zero for all time. 
The one-term approximation to the n = 2 equation for the variance a2 is 

1 da2 2D,C2 1 
-- = Do+-- 
2 dt 7Ta2 34' 

Again precedence belongs to Prych (1970) ,  though his arguments do not permit a 
precise evaluation of the nonlinear coefficient. The implicit solution is 

a2- Bln ( a 2 +  B) = 2D0t  + a2,-Bln (af + B) 

B = 2 0 ,  C2/nD, 3) .  with 
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0 1 I2 

z / u  

FIGURE 3. Approach to the error-function profile for a concentration 
jump as the nonlinearity parameter tends to zero. 

An important feature of this solution, as was noted by Prych, is that the difference 
from the linear solution increases indefinitely. Higher-order terms, such as those in 
(8), ( 9 )  and ( 1 2 )  above, merely augment ~2 by a bounded amount. Thus, in the present 
case, the simpler model (17 )  is adequate for most purposes. 

One yay  of interpreting the logarithmic growth of the excess variance is that there 
is reson'ance of the n = 2 mode (i.e. of the He, term). Indeed, in an earlier draft of this 
paper J2 was specified as the linear-theory approximation 

0-2 = 2D0(t-tt,) 

(cf. Barton's papers 1976a,b) .  This led t o  the explicit occurrence of a logarithmic 
term in the representation for C: 

- c sgn (D, )  (2/n)33-4T-2 In TX exp ( - ix2) .  
Here we take 6 2  to be the exact variance. Thus b, = 0 and at  leading order there is 

no resonance of any of the even cumulants: 

+O(Nzln I N ! ) .  
( - l ) m  (m + 1 )  (2m + 1 )  ! 

mm ! 3 m f t  b2m+2 = N 

In this context the nonlinearity parameter is defined to be 

N = 2 0 ,  C2/nDo u'. 
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For the odd cumulants the nonlinear forcing terms are only of order u-5 (owing to 
the absence of b,). Hence there is resonance only in the b5 term: 

Retaining only the order-N terms, we find that the concentration distribution is 
given by 

Figure 3 shows the profiles of c/C for positive values of D,. Contrary to the results 
for the approach to normality, in this case the relative steepness increases as the 
transition region widens. However, as regards the absolute steepness, the resonant 
contribution to the variance nullifies the importance of this feature. For negative 
values of D,  the effects are reversed. 

The author gratefully acknowledges the financial support of C.E.G.B. 

R E F E R E N C E S  

BARTON, N. G. 1976a The dispersion of a buoyant solute in laminar flow in a straight hori- 
zontal pipe. Part 1. Predictions from Erdogan & Chatwin's paper. J .  Fluid Mech. 74, 81-89. 

BARTON, N. G. 19763 The dispersion of a buoyant solute in laminar flow in a straight horizontal 
pipe. Part 2. The approach to the asymptotic state. J .  Fluid Mech. 74, 91-112. 

CHANG, I.-D. 1961 Navier-Stokes solutions at  large distances from a finite body. J .  Math. Mech. 
10, 811-876. 

CHATWIN, P. C. 1970 The approach to normality of the concentration distribution of a solvent 
flowing along a straight pipe. J .  Fluid Mech. 43, 321-352. 

CHATWIN, P. C. 1976 Some remarks on the maintenance of t.he salinity distribution in est.uaries. 
Estuarine Coastal Mar.  Sci. 4, 555-566. 

ERDELYI, A., I ~ G N U S ,  W., OBERHETTINGER, F. & TRICOMI, F. G. 1953 Higher-Transcendental 
Functions. McGraw-Hill. 

ERDOGAN, M. E. & CHATWIN, P. C. 1967 The effects of curvature and buoyancy on the laminar 
dispersion of solute in a horizontal tube. J .  Fluid Mech. 29, 465-484. 

IMBERCER, J.  1976 Dynamics of a longitudinally stratified estuary. Proc. 15th Int. Conf. Coastal 
Engng, Hawaii, pp. 3108-31 17. 

PRYCH, E. A. 1970 Effects of density differences on lateral mixing in open channel flows. Keck 
Lab. Hydraul. Water Resources, Calif. Inst. Tech. Rep. KH-R-21.  

SMITH, R. 1976 Longitudinal dispersion of a buoyant contaminant in a shallow channel. J .  Fluid 
Mech. 78, 677-688. 

SMITH, R. 1979 Buoyancy effects upon lateral dispersion in open-channel flow. Submitted 
t o J .  Fluid Mech. 

TAYLOR, G. I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. 
Proc. Roy. SOC. A 219, 186-203. 

TAYLOR, G. I. 1954 The dispersion of matter in turbulent flow through a pipe. Proc. Roy. SOC. A 
223, 446-468. 

I2 F L M  88 




